翻訳と辞書
Words near each other
・ No. 123 Squadron RAF
・ No. 124 Squadron RAF
・ No. 124 Wing RAF
・ No. 125 Squadron RAF
・ No-res
・ No-Rin
・ No-show
・ No-show (airlines)
・ No-show job
・ No-slip condition
・ No-teleportation theorem
・ No-three-in-line problem
・ No-till farming
・ No-touch surgical technique for penile prosthesis implantation
・ No-trade theorem
No-wandering-domain theorem
・ No-win situation
・ No. 1 (BoA album)
・ No. 1 (Coastal) Operational Training Unit RAF
・ No. 1 (film series)
・ No. 1 (Indian) Service Flying Training School RAF
・ No. 1 (Teen Top album)
・ No. 1 (yacht)
・ No. 1 Air Ambulance Unit RAAF
・ No. 1 Air Experience Flight RAF
・ No. 1 Air Force School, Gwalior
・ No. 1 Aircraft Depot RAAF
・ No. 1 Airfield Defence Squadron RAAF
・ No. 1 Airfield Operations Support Squadron RAAF
・ No. 1 Armoured Car Company RAF


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

No-wandering-domain theorem : ウィキペディア英語版
No-wandering-domain theorem
In mathematics, the no-wandering-domain theorem is a result on dynamical systems, proven by Dennis Sullivan in 1985.
The theorem states that a rational map ''f'' : Ĉ → Ĉ with deg(''f'') ≥ 2 does not have a wandering domain, where Ĉ denotes the Riemann sphere. More precisely, for every component ''U'' in the Fatou set of ''f'', the sequence
:U,f(U),f(f(U)),\dots,f^n(U), \dots
will eventually become periodic. Here, ''f'' ''n'' denotes the ''n''-fold iteration of ''f'', that is,
:f^n = \underbrace_n .
The theorem does not hold for arbitrary maps; for example, the transcendental map f(z)=z+2\pi\sin(z) has wandering domains. However, the result can be generalized to many situations where the functions naturally belong to a finite-dimensional parameter space, most notably to transcendental entire and meromorphic functions with a finite number of singular values.
==References==

* Lennart Carleson and Theodore W. Gamelin, ''Complex Dynamics'', Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993, ISBN 0-387-97942-5
* Dennis Sullivan, ''Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains'', Annals of Mathematics 122 (1985), no. 3, 401–18.
* S. Zakeri, ''(Sullivan's proof of Fatou's no wandering domain conjecture )''


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「No-wandering-domain theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.